

Climate Change Science from Global to Regional and Local Perspectives: Future Climate Change Impact in Southeast Asia

Asst.Prof.Dr.Jerasorn Santisirisomboon Ramkhamhaeng University Center of Regional Climate Change and Renewable Energy

1 August 2017

RU-CORE Ramkhamhaeng University

Center of Regional Climate Change and Renewable Energy

Outline

Greenhouse Effect **Observation of Climate Climate Model** Future Climate Projection **Downscaling GCMs Previous Studies** Current and Future study

The Father of Greenhouse Effect

Published a paper in early 1900 highlighting the greenhouse effect

The first person to predict that emission of CO₂ from burning of fossil fuels would cause global warming

Predicted doubling of CO₂ would result 5-6°C increase in global mean temperature (IPCC projection was 2-4.5°C)

Svante Arrhenius

Predicted it would take 3000 years to double the CO₂ concentration (IPCC estimated this would be achieved within this century)

(1859-1927, Nobel Prize Winner for Chemistry 1903; The first Swedish Nobel Prize Winner)

Key Statement / Headline of IPCC WG1 AR5 SPM

Warming of the climate system is unequivocal, and since the 1950s, many of the observed changes are unprecedented over decades to millennia. The atmosphere and ocean have warmed, the amounts of snow and ice have diminished, sea level has risen, and the concentrations of greenhouse gases have increased

Observation of Climate

The globally averaged surface temperature data as calculated by a linear trend, show a warming of 0.85 [0.65 to 1.06] °C over 1880 - 2012

Each of the last three decades has been successively warmer at the Earth's surface than any preceding decade since 1850.

In the Northern Hemisphere, 1983– 2012 was likely the warmest 30-year period of the last 1400 years (medium confidence)

Warming in the climate system is unequivocal

Key findings based on observation

Glaciers and ice melting

Scientists investigate long-period fluctuations of GHG concentration through ice cores

Atmospheric Concentration of GHGs

The atmospheric concentration of CO_2 and CH_4 in 2005 exceeds by far the natural range of the last 650,000 years

Up-to-date weekly average CO₂ at Mauna Loa

Week beginning on August 14, 2016: 401.85 ppm Weekly value from 1 year ago: 399.10 ppm Weekly value from 10 years ago: 380.38 ppm Last updated: August 24, 2016

One year of CO₂ daily and weekly means at Mauna Loa

What is Climate Variability? (Natural Driver)

What is Climate Change ? (Anthropogenic)

Radiative Forcing

Change in energy flux caused by natural or anthropogenic drivers of climate change (in Wm⁻²)

Positive near-surface warming; Negative cooling

Puts various drivers on common scale, indicates magnitude of impact

Radiative Forcing

Radiative Imbalance

Earth has been in radiative imbalance, with more energy from the sun entering than exiting the top of the atmosphere, since at least circa 1970. It is virtually certain that Earth has gained substantial energy from 1971–2010. More than 90% of this extra heat is observed by the ocean (high confidence)

Complexity of Climate Model over Time

Climate Models Response to Various Forcing

Human influence on the climate system is clear

Future Climate Projection

For future climate projections, climate models require Emission Scenarios. Models in AR5 use Representative Concentration Pathway (RCP)

RCP Scenario

	Description ^a	Publication—IA Model
RCP8.5	Rising radiative forcing pathway leading to 8.5 W/m ² (~1370 ppm CO ₂ eq) by 2100.	(Riahi et al. 2007)-MESSAGE
RCP6	Stabilization without overshoot pathway to 6 W/m ² (~850 ppm CO ₂ eq) at stabilization after 2100	(Fujino et al. 2006; Hijioka et al. 2008)—AIM
RCP4.5	Stabilization without overshoot pathway to 4.5 W/m ² (~650 ppm CO ₂ eq) at stabilization after 2100	(Clarke et al. 2007; Smith and Wigley 2006; Wise et al. 2009)—GCAM
RCP2.6	Peak in radiative forcing at $\sim 3 \text{ W/m}^2$ ($\sim 490 \text{ ppm CO}_2 \text{ eq}$) before 2100 and then decline (the selected pathway declines to 2.6 W/m ² by 2100).	(Van Vuuren et al., 2007a; van Vuuren et al. 2006)—IMAGE

^a Approximate radiative forcing levels were defined as $\pm 5\%$ of the stated level in W/m² relative to pre-industrial levels. Radiative forcing values include the net effect of all anthropogenic GHGs and other forcing agents

Representative Concentration Pathways

Indicative anthropogenic radiative forcing for the RCPs

Projected Global Average Temperature Change by end of 21st Century

Projected Global Average Temperature Change by end of 21st Century

Projected Precipitation Change by end of 21st Century

Projected Arctic Ice Change by end of 21st Century

Projected Sea Level by end of 21st Century

General Circulation Model (GCM)

Downscaling GCMs

Statistical Approach

Dynamical Approach

Regional Climate Model

Downscaling Activities in Thailand

- 1999 : Kansri Boonpragob and Jerasorn Santisirisomboon
- 2005 : Chinvanno and Snidvongs
- 2009 : Chinvanno
- 2010 : Jiamjai Kreasuwun
- 2010 : Sirinthornthep Taoprayoon
- 2010 : Kansri Boonpragob and Jerasorn Santisirisomboon
- 2012 2014 : Jerasorn Santisirisomboon
- 2013 2016 : Jerasorn Santisirisomboon
- 2016 2019 : Jerasorn Santisirisomboon

Previous Study 1 (1999)

Year	: 1999
Project leader	: Kansri Boonpragob
Organization	: Thailand Environment Institute and Ramkhamhaeng University
Funding agency	: US Country Studies Program
GCM	: GISS, UKMO, HADCM
Scenario	: Double CO2 from base year (1990)
Resolution	: 0.5 degree

Previous Study 1 (1999)

Temperature

Previous Study 2 (2005)

Year	: 2005
Project leader	: Supakorn Chinvanno
Organization	: Southeast Asia System for Analyses, Research and Training (SEA Start)
Funding agency	: Global Environmental Facility (GEF)
Technique	: Dynamical
RCM	: CCCM
Scenario	: CO ₂ concentration 360 540 720 ppm
Resolution	: 10 km
Previous Study 3 (2009)

Year	: 2009
Project leader	: Supakorn Chinvanno
Organization	: Southeast Asia System for Analyses, Research and Training (SEA Start)
Funding agency	: Thailand Research Fund (TRF)
Technique	: Dynamical
RCM	: PRECIS
GCM	: ECHAM4
Scenario	: SRES A2 and B2
Future year	: 2010 – 2099
Resolution	: 25 km

Previous Study 3 (2009)

Temperature A2

Previous Study 4 (2010)

Year	: 2010
Project leader	: Jiamjai Kreasuwun
Organization	: Chiang Mai University
Funding agency	y : Thailand Research Fund (TRF)
Technique	: Dynamical
RCM	: MM5
GCM	: CCSM3
Scenario	: SRES A1B and A2
Future year	: 2010 - 2039
Resolution	: 45 and 15 km

Previous Study 4 (2010)

Temperature : SRES A1B

Previous Study 5 (2010)

Year : 2010

Project leader : Sirinthornthep Taoprayoon

Organization : King Mongkut's University of Technology Thonburi Funding agency : Thailand Research Fund (TRF)

Technique : Dynamical

RCM : RegCM3

GCM : ECHAM5

Scenario : SRES A1B and A2

Future year : 2031 – 2070

Resolution : 20 km

Previous Study 5 (2010)

Previous Study 6 (2010)

Year	: 2010
Project leader	: Kansri Boonpragob
Organization	: Ramkhamhaeng University
Funding agence	y: Thailand Research Fund (TRF)
Technique	: Statistical
GCM	: GFDL-R30
Scenario	: SRES A1B and A2
Future year	: 2010 – 2029, 2040 – 2059
Resolution	: 0.5 degree

Previous Study 6 (2010)

Recent Study

Year	: 2012 - 2014
Project leader	: Jerasorn Santisirisomboon
Organization	: Ramkhamhaeng University
Funding agency	: Thailand Research Fund (TRF)
Technique	: Statistical
GCMs	: GFDL-ESM2M, MPI-ESM-LR, HadGEM2-ES
Scenario	: RCPs 4.5, 6.0, 8.5
Future year	: 2006 - 2100
Resolution	: 10 km

Meteorological Stations and Data

Selected GCMs

	GFDL-ESM2M	MPI-ESM-LR	HadGEM2-ES
Organization	Geophysical Fluid Dynamic Laboratory	Max Planck Institute for Meteorology	Met Office Hadley Centre
Base year		1961 – 2005	
Future climate projection		2006 – 2100	
Scenario	RCP4.5 RCP6.0 RCP8.5	RCP4.5 - RCP8.5	RCP4.5 RCP6.0 RCP8.5
Grid resolution Latitude Longitude	2.02247° 2.50000°	1.86500° 1.87500°	1.25500° 1.87500°
No. of Predictor	7	7	7

Predictors

Predictors for GCMs	Unit
Daily-Mean Near Surface Wind Speed	m/s
Sea Level Pressure	Pa
Precipitation	kg/m²/s
Near-Surface Specific Humidity	
Near-Surface Air Temperature	К
Daily Maximum Near-Surface Air Temperature	K
Daily Minimum Near-Surface Air Temperature	K

Downscaling Output

Base year	1961 - 2005
Future year	2006 - 2100
Spatial scale	latitude × longitude 0.1 × 0.1
Temporal scale	Daily
Area	latitude 5 – 22°N
	longitude 95 – 105°E
Output (Predictands)	Mean, Max., Min. Temperature
	Precipitation
	Relative humidity
	Sunshine duration
	Solar radiation
	Atmospheric pressure
	Wind speed

Temperature Change

The projections of annual average daily mean, maximum and minimum temperate as well as precipitation show significant increasing trend. At the end of the century, the annual average

daily mean temperature from RCP8.5 of GCM-GFDL-ESM2M, GCM-MPI-ESM-LR and GCM-HadGEM2-ES are projected to increase from the 1951 – 2011 long term average of 27.16°C by 1.67°C, 3.98°C and 4.82°C respectively, whereas the RCP4.5 show the increase of -0.63°C, 1.71°C and 2.01°C respectively.

Southeast Asia Region

$> \frac{1}{2}$ billion people

High exposure, higher vulnerability

No coordinated regional climate downscaling

No freely available downscaled regional climate change scenarios

Could be a contributing factor to lack of IAV studies in the region

Contar	Topics/issues	Nort	North Asia		East Asia		Southeast Asia		n Asia	Central Asia		sia	West Asia	
Sector	O = Observed impacts, P = Projected Impacts	0	Р	0	Р	0	P	0	P	0	1	Р	0	Р
Freshwater resources	Major river runoff	1	x	1	1	7	1	1	1					×
	Water supply	x	x	x	×	×	x	×	[×
Terrestrial and	Phenology and growth rates	1	1	1	I	×	x	x	-	5				×
inland water systems	Distributions of species and biomes	1	1	1	1	×	x	×						×
	Permafrost	1	1	1	1	1	x	1	0 0	D	10-01		x	
	Inland waters	x	x	1	×	×	x	×	10	1				x
Coastal	Coral reefs	NR	NR	1	1	1	1	1				0		1
systems and low-lying	Other coastal ecosystems	x	x	1	1	×	x	×				\sim		×
areas	Arctic coast erosion	1	1	NR	NR	NR	NR	NR			U	0		NR
Food	Rice yield	x	×	1	1	×	1	×				(L)		1
production systems and	Wheat yield	x	x	x	x	x	x	x		(5			1
food security	Corn yield	x	×	x	1	×	x	×	e s				×	
	Other crops (e.g., barley, potato)	x	x	1	1	×	x	×		2	(D		1	
	Vegetables	x	x	1	×	×	x	x	4	1	-	10		×
	Fruits	x	x	1	x	×	x	x	0 2	<u>U</u>			×	
	Livestock	x	x	1	x	x	x	x				4		×S
	Fisheries and aquaculture production	x	1	×	1	x	1	×	승민	-		× IO		
	Farming area	x	1	x	T.	×	x	x		z-Ś	S		× CC	
	Water demand for irrigation	x	1	×	1	×	x	×	(U)			GU		× <
	Pest and disease occurrence	x	x	x	x	x	x	x		4		C		×U
Human	Floodplains	x	x	1	1	1	1	1				Ē		×U
settlements,	Coastal areas	x	x	1	1	1	1	1			-	1		× Q
infrastructure	Population and assets	x	×	1	1	1	1	1	(1)		-	-		× OI
	Industry and infrastructure	×	x	1	E	E	1	1	0		-	-		×
Human	Health effects of floods	x	x	x	×	×	×	1				S		×
health,	Health effects of heat	x	x	1	x	×	x	x			2	S		× m
livelihoods,	Health effects of drought	x	x	x	x	×	×	×		1				×
and poverty	Water-borne diseases	x	x	x	x	L	x	1	()	5				×
	Vector-borne diseases	x	x	x	×	1	×	1						×
	Livelihoods and poverty	x	x	1	×	×	×	7	T	100				x
	Economic valuation	x	x	x	x	1	1	1						×

Southeast Asia Region

With multiple GCMs, RCMs, and emission scenarios, regional climate downscaling requires large computing resources

We have a number of institutions with regional climate modeling expertise but limited resources

Collaboration and sharing resources are the way to move forward

CORDEX provides a good platform for regional collaboration

CORDEX Domain

Southeast Asia Regional Climate Downscaling (SEACLID)

Initial Member Countries: Malaysia, Indonesia, Vietnam, Philippines, Thailand First Workshop hosted by VNU Hanoi University of Science, Vietnam, 2-3 Aug 2012

CORDEX domains

SEACLID/CORDEX SEA objectives

Create a platform for scientists (especially young scientists) within and outside the SEA region to collaborate on issues related to regional climate downscaling;

On a task-sharing basis, carry out a joint regional climate downscaling activity over a common SEA domain with RegCM4 (and other RCMs) using a number of CMIP5 GCMs and RCP scenarios;

Collectively analyze model performances, create an ensemble of regional climate projection scenarios for the SEA region, and establish a web portal and data center for efficient data dissemination (ESGF);

Narrow knowledge gaps related to regional climate change in SEA by increasing peerreview scientific and policy-relevant publications and strengthen research capacity and capability, particularly in numerical regional climate modeling.

Domain: ~15.14°S – 27.26°N, ~89.26°E – 146.96°E (approved by CORDEX)

Resolution: 25 km × 25 km

3 Years [Nov 2013 – Oct 2016]

SEACLID/ CORDEX Southeast Asia

GCMs, RCMs, RCPs and Country Assignments

Country	GCM	Institution & Country developed the GCM	RCP	RCM
Vietnam	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5, 4.5	RegCM4
Philippines	HadGEM2	Hadley Centre, UK	RCP8.5, 4.5	RegCM4
Thailand	MPI-ESM-MR	Max Planck Institute for Meteorology, Germany	RCP8.5, 4.5	RegCM4
Thailand	EC-Earth	EC-Earth consortium	RCP8.5, 4.5	RegCM4
Indonesia	CSIRO MK3.6	CSIRO, Australia	RCP8.5, 4.5	RegCM4
Malaysia	CanESM2	Canadian Centre for Climate Modeling and Analysis, Canada	RCP8.5, 4.5	RegCM4
Malaysia	IPSL-CM5A-LR	Institute Pierre-Simon Laplace, France	RCP8.5, 4.5	RegCM4
Malaysia	GFDL-ESM2M	GFDL, USA	RCP8.5, 4.5	RegCM4
South Korea	HadGEM2-AO	Hadley Centre, UKMO	RCP8.5, 4.5	WRF
Sweden	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5, 4.5	RCA3
Sweden	HadGEM2-ES	Hadley Centre, UKMO, UK	RCP8.5,4.5	RCA3
Australia	CNRM-CM5	Centre national de Recherches Meteorologiques, France	RCP8.5	CCAM
Australia	CCSM4	NCAR, USA	RCP8.5	CCAM
Australia	ACCESS1.3	CSIRO, Australia	RCP8.5	CCAM
Hong Kong SAR	CCSM4 or CESM	INCAR, USA	RCP8.5, 4.5	WRF
United Kingdom	HadGEM2-ES	Hadley Centre, UKMO	RCP8.5, 4.5	PRECIS
Germany	MPI-ESM-LR	Max Planck Institute for Meteorology, Germany	RCP8.5, 4.5	ROM
Japan	MRI-AGCM3.2	Meteorological Research Institute, JMA, Japan	RCP8.5,4.5	NHRCM

Impacts of a 4°C global warming

The explored consequences of an increase of the global earth temperature of 4°C are indeed devastating. Among the foreseen consequences are:

the inundation of coastal cities;

- increasing risks for food production potentially leading to higher malnutrition rates; many dry regions becoming dryer and wet regions wetter;
- unprecedented heat waves in many regions, especially in the tropics; substantially exacerbated water scarcity in many regions; increased frequency of high-intensity tropical cyclones; irreversible loss of biodiversity, including coral reef systems.

Future Temperature Projection

Whole Kingdom

2099, Linear Trend RCP4.5 : +1.6 – 1.8°C RCP8.5 : 2.8 – 3.2°C

Central

South

Future Temperature Projection

Temperature anomali in 2099 calculated base on linear trend compared to 1970 - 2005

MPI & EC-Earth	RCP4.5	RCP8.5	RCP4.5	RCP8.5
Whole Kingdom	+1.79	+3.19	+1.65	+2.86
North	+1.82	+3.23	+1.62	+2.83
Northeast	+1.78	+3.17	+1.57	+2.78
Central	+1.78	+3.17	+1.58	+2.80
South	+1.76	+3.14	+1.57	+2.78

Temperature Change : April

1

0.5 1 1.5 2 2.5 3 3.5 4 4.5

^{2 2.5 3 3.5 4 4.5} 0.5 1.5 1

Future Rainfall Projection

Whole Kingdom

North

Northeast

Central

South

Future Rainfall Projection

Rainfall anomali in 2099 calculated base on linear trend compared to 1970 - 2005

MPI & EC-Earth	RCP4.5	RCP8.5	RCP4.5	RCP8.5
Whole Kingdom	-1.58	-1.97	-1.11	-1.62
North	-1.49	-1.86	-0.94	-1.44
Northeast	-1.44	-1.70	-0.68	-1.15
Central	-1.70	-2.16	-1.35	-1.89
South	-1.94	-2.50	-1.81	-2.43

Precipitation Change : April

140E

100F

-3 -2.5 -2 -1.5 -1 0

140F

-3 -2.5 -2 -1.5 -1 0 1 1.5 2 2.5 3

100F

-3 -2.5 -2 -1.5 -1

0

1 1.5 2 2.5 3

140E

1 1.5 2 2.5 3

1008

-3 -2.5 -2 -1.5 -1 0

1 1.5 2 2.5 3

Trend of Min Tmax

Trend of Heavy Precipitation Days

ESGF node @ RU-CORE

Welcome, Guest. | Login | Create Account

You are at the ESG-DN1.RU.AC.TH node

Federated ESGF-CoG Nodes

Technical Support

SEACLID/CORDEX Southeast Asia

Home About Us Users Resources Contact Us

Welcome to the SEACLID/CORDEX SEA ESGF Node @ RU-CORE

Needed for Higher Resolution Climate Data Set

Regional Climate Model Domain

Resollution Domain cartographic projection Cumulus convection Scheme Ocean Flux scheme

> Boundary layer scheme Moisture scheme

RegCM4 v RegCM 4.3.5.7 Latiture 15.14°S – 27.26°N Longitude 89.26°E – 146.96°E 25 km × 25 km Normal Mercator MIT Emanual Zeng Ocean model roughness formula 1 Holslag PBL Explicit moisture

Not high resolution enough!?

How to achieve higher Resolution Climate Data Set?

SEACLID/CORDEX Southeast Asia Phase 2: High-resolution analysis of climate extreme over key areas in Southeast Asia

Funding Agency: APN

Date of notification of acceptation : 1 June 2016 Contract signed by RU : 1 December 2016 Contract signed by APN : 9 December 2016

Project has started in December 2016

Co-funding : Ramkhamhaeng University : National University of Malaysia

Objectives of SEACLID/CORDEX SEA Phase 2

To provide high resolution (3 km x 3 km) multi-model, multi-scenarios climate change and climate extremes projection for selected key vulnerable areas in Southeast Asia region

To establish stronger collaboration with stakeholders through user needs assessment and providing guidance on usage of climate information created from the project

Major Collaborators

Name	Country	Institution
Prof. Dr. Fredolin Tangang	Malaysia	National University of Malaysia
		(NUM)
Prof. Dr. Phan Van Tan	Vietnam	VNU Hanoi University of Science
		(VNU HUS)
Prof. Dr. Edvin Aldrian	Indonesia	Indonesian Agency for
		Meteorology, Climatology and
		Geophysics (BMKG)
Assoc. Prof. Dr. Gemma Narisma	Philippines	Ateneo de Manila University
Assoc. Prof. Dr. Thanh Ngo-Duc	Vietnam	VNU HUS
Dr Liew Juneng	Malaysia	NUM
Dr Patama Singhruck	Thailand	Chulalongkorn University
Dr Faye Cruz	Philippines	Manila Observatory
Dr Dodo Gunawan	Indonesia	BMKG
Dr Ardhasena Sopaheluwakan	Indonesia	BMKG

Major Collaborators

Proposed Future Collaborators

Proposed Future Collaborators

To identify key vulnerable areas for high resolution (3 km x 3 km) climate change and climate extremes projection through user engagement(0th -6th months)

To prepare the high resolution model runs, specifically the forcing data and the gridded observation data for analysis and validation

To simulate historical and projected climatology of key vulnerable areas with high resolution model runs

To analyse modelled climatology and climate information and archiving of model outputs

To communicate output/findings through users engagement

Selection of Key Vulnerable Areas, GCMS and RCMs

Vulnerable Areas Area1 : North-eastern region Thailand Area 2: Central Vietnam Area 3: Peninsula Malaysia Area 4: Mindanao The Phiippines Area 5: Java Island Indonesia

GCMs 3 (output from 1st phase) RCMs 2 (RecCM, WRF, etc)

Baseline : 1970 – 2000 Projection: 2031 – 2060, 2070 – 2100

Proposed commond domain for Vietnam and Thailand that covers the "FOOD BASKET"

Thank you