

URBAN CLIMATE CHANGE ADAPTATION AND RESILIENCE IN METRO MANILA, PHILIPPINES

Bangkok Metropolitan Administration Bangkok, Thailand 31 July 2017

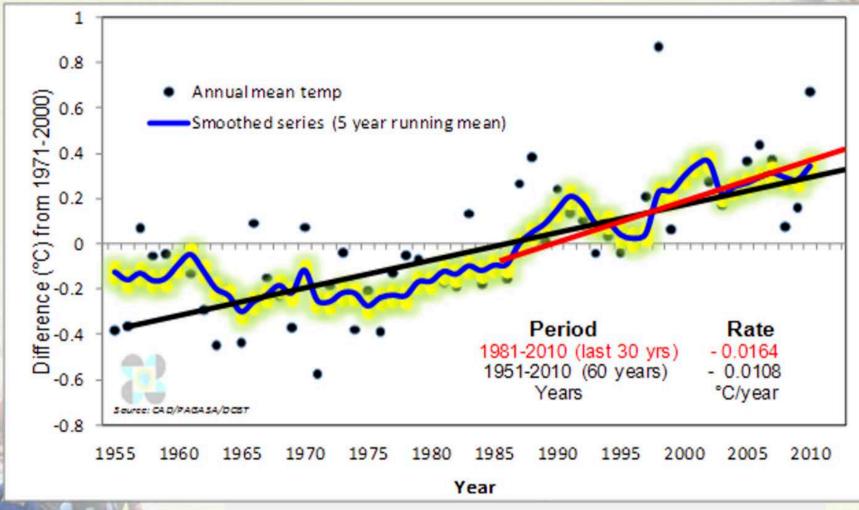
> Mario R. Delos Reyes UP SURP

Outline

- Philippines (esp. Metro Manila) as disaster prone due to impacts of Climate Change
- Major events on CC related disaster in MM and the Phil
- Major Phil environmental policy response to CC & DRR
- Mainstreaming CCA & DRR into LDP Process
- Building sustainable and CC related disaster resilient Metro Manila

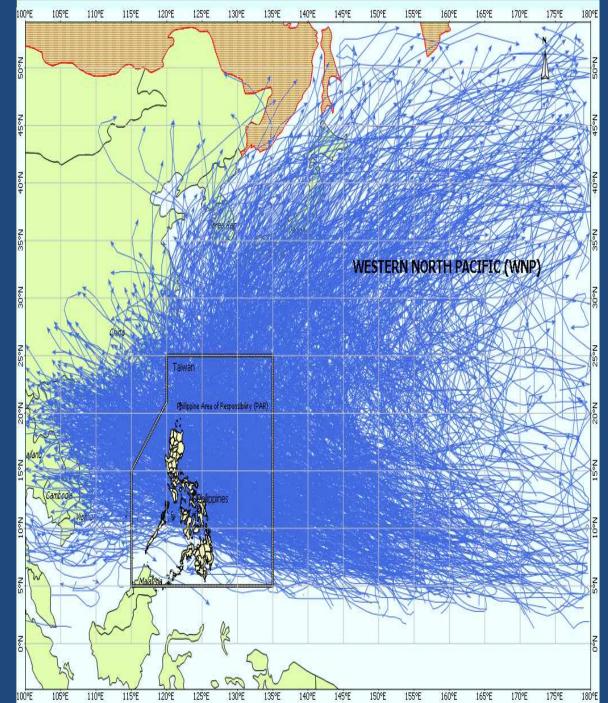
Phil (Metro Manila) as disaster prone due to impacts of CC

2015 Report


Philippines & World Disaster Risk Index

Ranking 2013 (2012)	Country	CRI score	Death toll	Deaths per 100,000 inhabitants	Absolute losses (in million US\$ PPP)	Losses per unit GDP in %	Human Development Index ¹⁰
1 (2)	Philippines	2.17	6479	6.65	24538.56	3.82	117
2 (65)	Cambodia	6.67	184	1.22	1495.52	3.24	136
3 (46)	India	12.67	7437	0.60	15147.02	0.22	135
4 (58)	Mexico	15 <mark>.</mark> 00	224	0.19	10589.70	0.51	71
5 (143)	St. Vincent and the Grenadines	15.33	9	8.18	96.58	8.33	91
6 (3)	Pakistan	15.50	301	0.16	5419.77	0.65	146
7 (143)	Lao PDR	17.67	23	0.34	263.51	0.83	139
8 (32)	Vietnam	17.83	152	0.17	2397.04	0.50	121
9 (40)	Argentina	20.33	122	0.29	2010.00	0.22	49
10 (16)	Mozambique	21.67	119	0.46	88.21	0.33	178

Philippines mean temperature


PAGASA, 2012

Observed Mean Temperature Anomalies in the Philippines (1951-2010) Departures from 1971-2000 normal values

An increase of 0.65°C from 1951-2010 (60 years)

Scheel of Urban and Regional Planning

Impacts of CC induced Disaster

Changes in Precipitation

Increase in frequency, intensity of typhoons, floods, storm surge, landslides, water-related diseases

Sea Level Rise

- Erosion of beaches
 Inundation of low-lying areas
 Increase risk of flood
 - Changes of tides of rivers and bays
 - •Salt-water intrusion of groundwater

Increase in Temperature

Droughts Water Shortage Power Shortage

Metro Manila...Is this the new normal?

Climate Change is a Newsmaker in MM

Major events on CC related disaster in MM & Phil

ONDOY LOSSES

956 deaths

floods and landslides

86 missing 84 injured

US\$730M losses by housing sector 249 deaths from diseases

9.3 million impacted US\$2.34 B damage to enterprises

US\$ 4.3 Billion (2.7% of PHL GDP) damages to crops, property and infrastructure

> PHP 4.42 Billion (2.8% of PHL GDP) for Rehab & Recovery

> > US\$849.3 M losses by farmers

Scheel of Urban and Regional Planning

Typhoon Ondoy Impacts

Flooding

Landslides

School of Urban and Regional Planning

CLLDA-CFU

On November 8, 2013, Yolanda devastated the Philippines causing unprecedented damage to nine regions; spread across 44 provinces, around 600 municipalities and 56 cities

Government estimated the total damage to infrastructure at Php40 billion

550,928 houses were destroyed while 390,000 were partially damaged Wind speed of 235 kph and gustiness of 275 kph

Around 16 million lost their livelihood while some 4.4 million were displaced. Death toll registered 36,000 casualties.

VISIBLE/INFRARED 7 NOV 13 21:30UTC UW-CIMSS

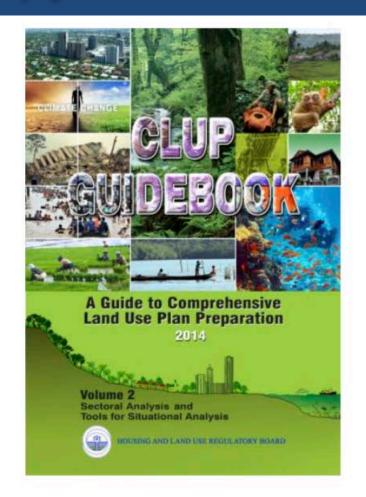
Super Typhoon Yolanda Impacts

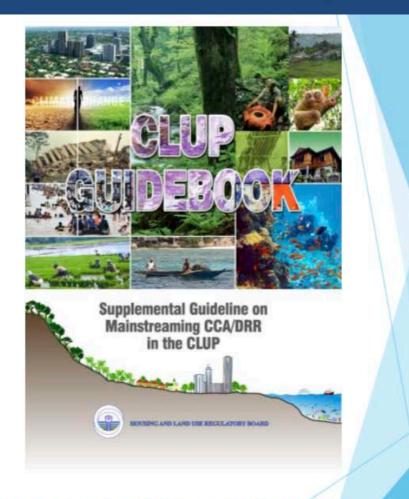
Major Phil environmental policy response to CC & DRR

CC Mitigation & Adaptation

MITIGATION = avoid the unmanageble

ADAPTATION = manage the unavoidable

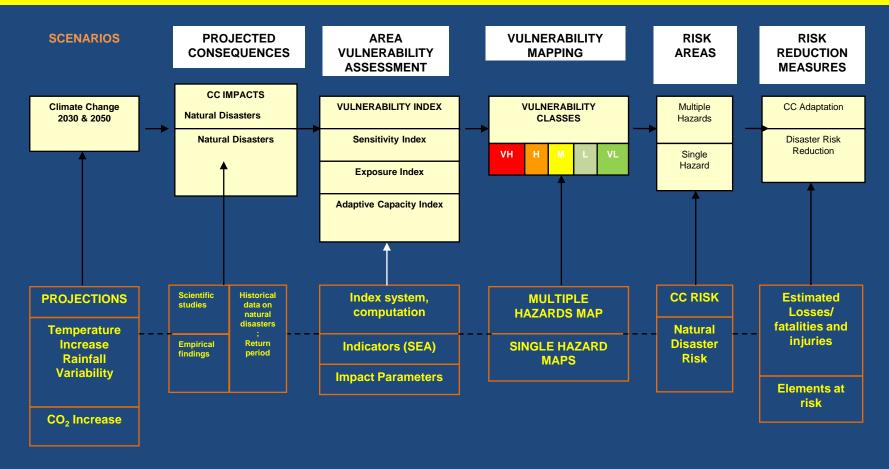

Major Policy Response to CC & DRR


RA 9729 - Climate Change Act of 2009

RA 10121 – Disaster Risk Reduction and Management Act of 2010

Supplemental Guidelines on CCA/DRR

Climate Change Adaptation and Disaster Risk Reduction (Volume 2, CLUP Guidebook 2014, HLURB) Supplemental Guidelines on Mainstreaming Climate and Disaster Risks in the Comprehensive Land Use Plan (Project Climate Twin Phoeni HLURB/Climate Change Commission/UNDP/



Mainstreaming CCA & DRR into the Local Development Planning Process

MAINSTREAMING FRAMEWORK

Planning Process

SITUATION ANALYSIS

(Climate projections for the city, set future scenarios, identify present and future challenges)

ISSUES AND PROBLEMS: Identify drivers of vulnerability and prioritize issues STRATEGIC SPATIAL PLANNING (Land Use and Resource Development and Management Planning: Development Constraints and Potentials) PRIORITIZING DEVELOPMENT AND MANAGEMENT PPAs PRIORITIZING INVESTMENTS (Area-specific and Project-specific investments)

Cabrido, et al., 2012

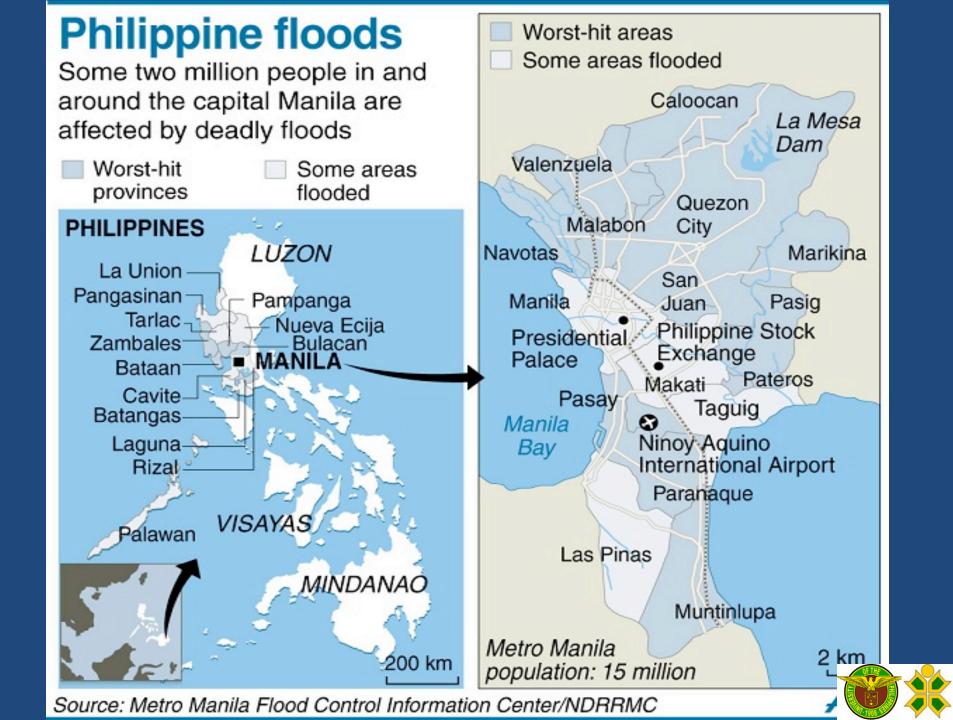
Vulnerability Assessment

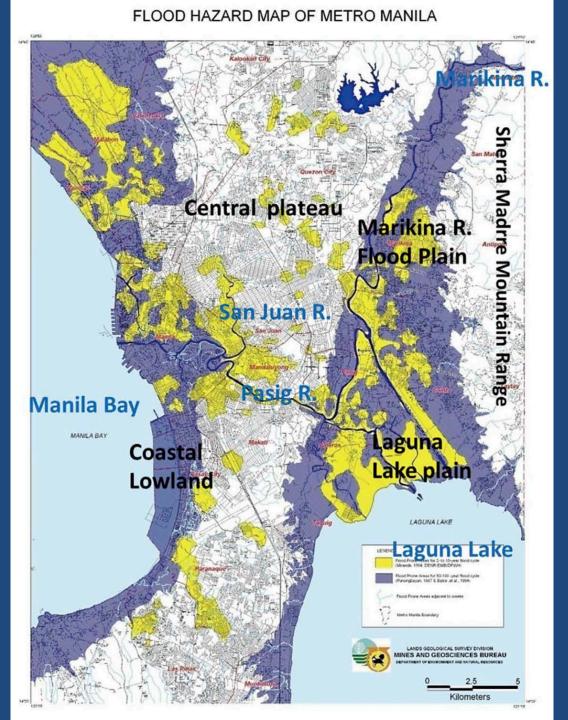
Vulnerability - degree to which people, property, resources, systems, cultural, economic, environmental, and social activity is susceptible to harm, degradation, or destruction on being exposed to a hazard

MAE <u>Sensitivity x Exposure</u> Adaptive Capacity

VA Index Matrix for MM

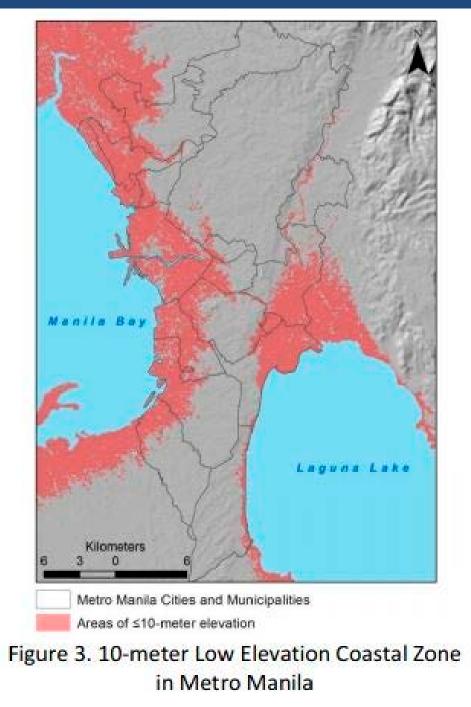
Impact Parameters	Vulnerability Index									
	Sensitivity indicators (s _i) (Susceptibility)	Rel wt (%)	Opera bility	Exposure indicators (e _i) (Extent and number)	Rel wt (%)	Opera bility	Adaptive Capacity indicators (a _i) (Adaptation measures)	Rel wt (%)	Opera bility	
Flooding	For i = 1-Rainfall volume 2-Slope		H H	For i = 1-Extent and number of riverine communities at risk		L	For i = 1-Maps of flood prone areas		М	
	3-Proximity to river4-Percent forestcover in watershed5-Land use inriparian areas and		M H M	2-Extent and number of settlements and population in floodplains at risk3-Types and value of physical assets exposed to downstream		L	2-Reforestation efforts 3-Soil erosion control and soil conservation practices in the watershed		H M	
	flood plains			flooding 4-Extent of flood prone areas		L	4-Riverbank stabilization efforts		Н	
				in lowland areas 5-Extent of agricultural areas at		L	5-Solid waste disposal and		Н	
				risk			management 6-Flood control and drainage facilities in		М	
							floodplain areas		М	
							7-Flood preparedness 8-Warning system		Н	
							and evacuation routes 9-Relocation of high risk population		H	


Vulnerability Index Matrix for MM


Impact Parameters	Vulnerability Index								
	Sensitivity indicators (s _i) (Susceptibility)	Rel wt (%)	Opera bility	Exposure indicators (e _i) (Extent and number)	Rel wt (%)	Opera bility	Adaptive Capacity indicators (a _i) (Adaptation measures)	Rel wt (%)	Oper a bility
Landslides	For i = 1-Rainfall volume 2-Slope class 3-Distance to		H M L	For i = 1-Settlements (number of houses and residents) within and below		L	For i = 1-Maps on landslide prone areas 2-Awareness of exposed population		M
	fault lines 4-Lithology 5-Frequency of earthquake with intensity of 6		L M	landslide prone areas (Settlements under high risk) 2-Extent of cultivated		L	on landslide risk 3-Relocation efforts by LGU 4-Efforts on stabilization of slopes		Н
	and above in Richter scale 6-Presence of construction activities		н	agricultural lands below landslide prone areas			in landslide prone areas 5-Alert and preparedness system for seismic activity	STAR	H

Vulnerability Index Matrix for MM

Impact Parameters	Vulnerability Index									
	Sensitivity indicators (s _i) (Susceptibility)	Rel wt (%)	Opera bility	Exposure indicators (e _i) (Extent and number)	Rel wt (%)	Opera bility	Adaptive Capacity indicators (a _i) (Adaptation measures)	Rel wt (%)	Opera bility	
Drought	For i = 1-Percent forest cover 2-Land use 3-Incidence of El Nino 4-Rainfall volume 5-Presence of river and streams		H H M H	For i = 1-Extent of upland farms and number of families affected 2-Value of crops lost 3-Extent of areas affected by El Nino event		L	For i = 1-Small scale upland irrigation program 2-Water conservation practices adopted		H	



DENR-MGB, 2009

Tablazon, et al., nd

UP SURP Latest Projects on CCA/DRR

- Roadmap to recovery and reconstruction
- Building sustainable and CC related disaster resilient informal settlement communities
- Planning guidance for CC related disaster response and early recovery thru HLM
- Urban renewal planning for natural disaster prevention responding to CC
- Urban CC and DRR adaptation and resilience
- Capacity building on CCA & DRR in Southeast Asian countries

Building sustainable and CC related disaster resilient Metro Manila

In Closing...

- The need for science/evidence-based data/info for CCA & DRR resilience
- Participation and consultation are very impt in CCA & DRR resilience
- Emergency response is different from medium to long-term response
- Building resilience to CCA & DRR requires sustained engagement
- More appropriate and long-term funding mechanisms needed; i.e., development, CCA & DRR funds

Ground Zero, Sitio Calacala, Bgy. Macasandig, Cagayan de Oro City Dec. 20, 2011

Addressing the climate change challenge means BUILDING A BETTER NATION.

Thank you

mrdelosreyes@up.edu.ph website: surp.upd.edu.ph fb: upsurp

